A. C. 0. LIBRARY

Γ

9031020 SIR
 SUBROUTINES

(C) The Copyright in this cocument is the property of Elliot: Flight Automation Limites. The cocument is supphed by Elliott Flight Automation Limited on the express terms that it is ro be treated as conifiential and that it may not beccoled used or disclesed to others for any purpose except as authorised in writing by this Company.

PREGCS

This poste dacinbor the frotoung taper:-

05 Tl 0
QSMATH
QDLA
QDMATH
QF
QFIlO
QEMAH
$C H$ I 10 - LEGTARE S/R
$C H$ ITO SLR
 SUERQUFivem
SHELLScRT

$1\|2\| 71$	$"$
$17\|8\| 7$	

The first seuen of tha abese baper enable singb-lentht, doublelength and forbing point cabcubations bo be perbormet on any 900-senies 18-bit computer ercapt postity, a 920 A . (The suibubithy of theac bapes for a groa is uncestain). Their funcbons cies summomod in the solocuing bable:-

 Sever tapes moy mput and ortput data (ant emer
 proviting sustube subrouthos.
 contion ERROR, CHEP and Chof suhnmatins (for ats

 beput and outect co data (and emar indication) in 900-seria or 920 telecrts, (ant, in tea cose of CH $2 / 0+$ LEGTHE S SR onty output in lagik tape), via punch ond kader. Thas
 ant whe mader mosetz 3.

The tape "OFTHMSES MATHEMATICAL SUBROUTNES" daplicater some of the funtions of QSMMTH; but wses less sbore, less lime, and is mope acurnta. (QSMATH has bom rebained for its other forctions and for corypabatituty wite eatise progroms).
"SHELScoter" is a gernett sorting progrom for fixed-longti Hecork hat in stow

 on spatter feet.

 used in certain sections of thin berk:-
(${ }^{\text {(}) ~ H o r i z o n t a l ~ T a b ~}$
(1) Newline, or $\mathrm{C} / \mathrm{R}+\mathrm{L} / \mathrm{F}$
(i) Halt or Stopeode
(3) Space

The following table summarises the store used by these tapes and gives the abbreinated name used for them in err indications:-

QS I/0 15/12/69 900-Series Telaced

Note.

The "INDIRECT" TS-CUM-QINS ant T6-CUM-QOUTS conbainat in thin frepe shouth not 表点 confued with lae "sirect" ueriens issuad os 2 sparate taper in the uluty Solurute Packoges.

The "DIRECT" versions input ont orkput via thes
 They are thes inftastur, sut occupy lithe stotes. They ate providet ar a debugging aid for progains ocupting mest of the stane; or for prograns weide ave bo the no a fem timen but not to be fexpt.

Tho "INDRECT" verstims input and oubpul via character input ant odpwt subroutinar. They shembl be used in any phogram pagising single-lengte rowner west antontpet weriete is to be thept. Whilat the indriese venirm (plus a suitoble character input and cobyut subvontimes) occupy move sbote in fotal than the deinct veriome the resutive program can casily be modified at a laber date to curk in any Tabecte via ony perpharet.
1.1. FUNCTION.

QSI/O contrins 2 suburatinter :-

$$
\begin{aligned}
& T S-C U M-\operatorname{MN} \\
& T 6-C U M-G O U T
\end{aligned}
$$

for the imput and owput os singte-banter numbers. These routines abs descibest indivitudaly in seclions 2 e. 3 Selows.
1.2. STORE USES.

218 consecutive locations
24 liberle
1.3. GRH of 215TMUGTION.

QSIlO is a SIR tape in 900-Serios Telecete, and sluould be assemilet as a blach of the user's ste program.

CHIP, CHOF and ERROR Subroutines moste alro be orsemblet in the user: ste progrom.
Q. TS-CUM-QINS.
2.1. Function.

T5-cun-qum is a SIR subroutive bo read in one integor or fradion from a daba bape via the character imput subvoutine 'ctle'. It is suitable for use on any prionly lewel.
2.2 ncurncy

Integes ase stome voctly. Frations ate roudded toward zoo cute in naximeson ons of g^{-17}.
2.3 MeTHOD OF USE

T5-CUll-QN is cubered sog than fothouing instructioms:-

(The first of these 3 froms is lecommended, the otews ase ondy proithas fo compatobility with of preverimes)
2.4 DNTA TAPE

Titcgres shaud be punched
tor -
a seqpance of 1 to 6 digits ony non-diget (e.g. (A), (D), or (S))

Note thot -131072 cannet be input. Fraclions should be pumehed

+ or - followes by e
a sequence of 1 b 6 digito
any non-digit (eg. (ब) (1) or (3))
Blants \& araics will be ignowed everycupnat, as will the charection prevesing the to
2.5 Example of ama rate
+3 snouts $12 / 10 / 60$

$$
\begin{array}{rll}
A+678 & B+605 & C \\
A+713 & B+40 & C \\
A+82 & B+010 & C+.99999 \\
A & +000010
\end{array}
$$

This exeruple wold fe lead by entering TS-CUH-QIN 10 times.
2.6. FRROR INDKATIOMS

TS-CUM-RIN will punch the message "QS 1/0 ERROR 1" using the ERROR subroutine, is any of the following entry is found:

The first character after the for - is not a digit. or
The first character after a o is not a digit Moos lon 6 digits
Integer outside ± 131071.
3. T6-cun- - OUt1.
3.1 EUNCTION.

T6-CUM-QOUT1 is a SIR subroutina bo punch the contentr of the accomulator an an integer, fraction, ar octal word via the character oubput subvoutine 'ctop'. It is suitalls for use on any prienty buet.
3.2. Metrat of USE

The entry instrictions are as follows:To print the contonts of the accumulator as:-

(The upper of thase 3 forms is recommented, the ators as only povited for compatiblty aith det prognmues)

In all cases Re 2 entry instructions mise tox soltomed by the parameter assort (see below).

The subroutine exits to the location after tee parameter work.
3.3. The NumbER - $-1310 \% 2$

The integer -131072, and Fraction -1 , will be punched in octane, (irrespective of Pe entry insbuctions used) as $\& 400000$.
3.4. OUTPUT FORHAT \& PARMHETER WORD

The parameter wort is punched in the form if an absolute adtresed instruction, e.g.

$$
\begin{array}{cc}
10 & 0 \\
\text { or } \quad 2 & 3 .
\end{array}
$$

If the modifier bit '/'s is present, the output will start with o (1). Is fins is rot present, output will start with (S)(S).

Below, $\left\{\begin{array}{lcllll}F & \text { refer to } & \text { Que function dight of tea parents. } \\ \mathrm{N} & " & " & " & \text { aten } & \text { " } \\ \hline\end{array}\right.$
341. octan will be punched in the What format:-
$\left\{\begin{array}{l}\text { (1) or (3) (3) } \\ \& \\ \text { exactly } 6 \text { dight }\end{array}\right.$
E.G.(1) 2123456 .

F\&N are ignored
3.4.2. Fractions will effectually be MULTIPLIED by 10^{N} before printing, and the least significant F digits will be omits, I.E. the following will bo punctack:-

$$
\begin{cases}\text { (1) or }(S)(S) & \\ \text { t or - } & \text { (wite'leating zoos replaced by spacEs) } \\ N \text { digits } & \text { Decimal point } \\ \text { (unless followed by no digits) } \\ (6-1)-F \text { digit } & \end{cases}
$$

Thus for be usual fraction format, e.g. $(\Theta)+123456$, use $F=N=0$.
3.4.3. INTEGERS will effectively be DIVIDED by $10^{\prime \prime}$ before printing, and the least significant F digits will be onsite, I,E. the following will be punched :-

$$
\begin{cases}(N) \text { or }(S)(S) \\ + \text { or }- \\ (G-N) \text { digits } & \text { (nit 'fEeding' zeros omitrov) } \\ \text { Decimal pint } & \text { (unless follement by no digit) } \\ N-P \text { digit a } & \end{cases}
$$

Dues for the usual integer format, eg.
(1) +123456 , use $F=N=0$.
3.5. EXMMME OF OSE OF PRRMETER

Given that the accumulater conbions an angle in degraus scaled by 180° (so luat $+25^{\circ}+45^{\circ}$) to print the angle on a now line, in degress, to one dacimal place:-

12	+18
11	QOUT
8	Qput $1+2$
	$/ 23$
12	+18000
11	QDOT
8	QOUT $1+1$
	$/ 12$

$$
+\underbrace{F=2}_{N=3} \begin{aligned}
& F=2 \\
& 1800 \\
& \hline
\end{aligned}
$$

or

$$
\begin{array}{r}
F=1 \\
+1800 \% \\
N=2
\end{array}
$$

It is recommendat that the parametri word is punchad in the "adetes" columen with F\&N separatest by one (S); so that it is essilly recognised as a parancter.
3.6. WARMNG

Athor, this subroutine is particutarly suited to printing quantitios scales by powen ot 10 , it is usuily more accurte to STORE and ORTRTE upor quantitien scaled by powas $\frac{3}{3} 2$ or scolan by Beis maximum ualuot, ($a n$ in the above exampl).
3. 7 ERROR INDICATIONS

T6-CUH-QouT will punch tea menage "OS $/ / 0$ ERROR ${ }^{\text {E" }}$ wing the ERROR Subroutine thentased at the integer or fraction entry port and a moaning parnuth in wed, ie. is

$$
\begin{aligned}
& N<6 \\
& N<F \quad \text { for integous } \\
& 6=N<F \quad \text { for fractions }
\end{aligned}
$$

3.8. ACCURACY

Integers, printed with $F=0$, are printed exactly. Fraction, " "F=0," rounded
boards zee, \& hence contain a maximum error of 10^{-6}.
whom digits are omitted by setting $F>0$, the printed digits are not changed, i.e. rounding is towards $=0.0$. For example +49 would be printed as +4 is $F=1$.
4. ENAMPLE OF PROGRAN USINS QS $1 / 0$.

The following program will mase in a doba bape of the form

$$
\text { Pounss }+1234 \text { SHullNG }+5 \text { PENGE }+6
$$

and punch out the equicalonk number of ob pence in lagible bafe from, wing the CHIP, ctore ERROR

[start Qun gouts chief
chopr chope chori chores

PENCE >1

1.1. Gnction.

QSMATH contains 5 subroutines for the culculatizn of matemabixat functiont of singla-tavger nombers:-

These are deacribed individually in sections 2 to 6 balow.
1.2. STORE USED.

377 Conseculius locations
6 Literals.
1.3. FORM OF DISTRIRUTION.

QSMATH is a SIR tape in 900 -Sanics Telecoste and should be assembled as a block \& the used's SIR program.

An ERROR subvoutinc must aloo be assembled in the user's SiR program.

2.1. Functions.	
	To calculate
	$\frac{1}{2} \sin \pi x$
and	$\frac{1}{2} \cos \pi x$

where x is the fraction in the accumulator.
It may be run at any program level and in any btore module.

2.2. Accuracy.

The maximum exror is $2^{-15}(\approx .00003)$

2.3. METHOD OF USE \& ENTRY INSTRUCTIONS.

The operand, x, and the result munt be treated by the programmer as pure fractions.

To enable this to be done QSIN calculates

and \quad| $\frac{1}{2} \sin \pi x$ |
| :--- |
| $\frac{1}{2} \cos \pi x$ |

Note, therefore that on entry, the accumulator holds the value of an angle as a fraction of π radians (180 $)$.

Entry is made by

> 11 QSIN $8 \mathrm{OSN}+1$

> On exit
> $\frac{1}{2} \sin \pi x$ is in the accumulator
> and in $\operatorname{QSTN}+67$
> $\frac{1}{2} \cos \pi x$ is in $Q S N+68$. in all blocks of the uscrs program which refer to $i t$.

2.4. TME TAFEN.

$1.4-1.8$ miliseconds, on 903 of 9206 .

3. function

QSQRT(B6) is used to calculare the singlederch square-roof of a single-1ength or double-length fraction.

It may be mun at any program-level
and in any store-module.
Two entry points are provided for single-lenget and double-length working.

> 3.2. ACCURACY

The maximum error is $\pm 2^{-17}$.

3.3. METHOD OF USE \& ENTRY INSTRUCTONS.

The operand is denoted by a and, if the operand is double-length, the most significant half is denoted by a (m. s.), and the least significant half by a (l. s.).

Double-length Working.
Entry Place a (1.s.) in QSQRT+3 Place a (m.s.) in the accumulator Placelink in QSQRT Jump to \quad QSQRTH 1

Exit The result is held, single-length, in the accumulator and also in QSQRT+45
a (m.s.) is in $\quad \operatorname{QSQRT}+4$
a(1.s.) is in QSQRT+3

Entry Place a in the accurnulator Placelink in QSSRT Jump to \quad QSORT12

Exit, The resultis held, single-length, in the accumulator and also in \quad QSORT+45 alsin \quad QSQRTIA

In a SIR program, QSQRT must be declared as a global identifier in all blocks which refer to it.

3.4. ERROR INDICATION

If a<0then QSQRT cill punch tee message
"QSM ERROR 1" using the ERROR subvoutina.
3.5.TME TAKEN
(The time for the single-length entry is in brackets). If the final approximation is X_{n}
then the time taken is $680(805)+375 \mathrm{n}$ microseconds
The maximum time is $5.3(5.5)$ milliseconds
If $\mathrm{a}=0$ the time taken is $250(375)$ microseconds on 903
If $a \geq 1-2^{-17}$ the time taken is $300(450)$ microseconds. of 920 e

41 function

$$
\begin{gathered}
\text { To calculate } \\
\text { where } \quad t \quad(1 / 1) \tan -1(x / y) \\
-1 \leq x<+1 \\
\\
-1 \leq y<+1
\end{gathered}
$$

level and in any store module.
4.2. ACWRACY.

The maximum error is $2^{-25}(\approx .00003)$.

4.3. METHED OF USE \& RNTRY INSTRUCTIONS.

All numbers must be treated by the programmer. as pure fractions. To enable this to be done QATAN calculates

$$
(2 / \pi) \tan ^{-1}(x / y)
$$

Note, therefore, that on exit the accumulator holds the value of an angle as a fraction of 14 radians (180).

> Entry:place x in QATAN+89
> " y in QATAN+90
> " link in QATAN
> jump to QATAN+1

Exit: the result is fa the accumulator x and y axe not affected.

QATAN must be declared as a global identifier In all blocks of a SIR program which refer to it.
4.4 ERROR TNDICATIONS.

If $\mathrm{x}=0$, then QATAN ill, punch the mosigge "QSM ERROR 2" using the ERROR subroutine.
4.5. TME TAKEN.

The time taken depends on the values of x / y and of y. The maximum time is about 3.2 milliseconds, on 903 ps pros.

5. QLN

5.1. FUNCTION.

To calculate
$1 / 16 \log _{e} x$
where x is the faction in the accumulator. It may be nun at any program level and in any store module.
5. 2. Accuract.

The maximum exror is $2^{-16} .(\approx .000015)$

5.3. ENTRY INSTRUCTIONS \& METHOD OF USE.

The 900 sener u fractional machinesand all numbers in the accumulator, on entry and exit, must be treated as pure iractions by the programmer.

On entry the accumulator contains the number whobe logarithm is to be calculated. Entry is made by

$$
\begin{aligned}
11 & \text { QLN } \\
8 & \text { QLN }+1
\end{aligned}
$$

On exit
$\frac{1}{26} \log _{e} x$ is held in QLN +52 and in the accumulator.

QLN must be declared as a global identifies in all blocks of the user's program which refer to it.

If the accumulator's contents on entry are not positive then QLN will punch the message "QSM ERRoR 3 " wring the ERROR Subroutine.
5.5. TIME TAKEN

Between i. 3 and 2.8 milliseconds (dependent on the number of shifts required to scale x), on 903 or geo 6 .

6.1. FONCTION

To calculate $\exp \left(2^{P} x^{\prime}\right)$ where
$-1 \leq i<0$
$\mathrm{p} \geq 0$, and p is integral.
It may be run at any program
level and in any motor- module.
6.2. ACCURACY

The maximum error is $2^{-26}(\sim, 000015)$.

6.3. HETHOD OF USE \& ENTRY INSTRUCTIONS.

x 'is treated as apure fraction;
p is treated $a s$ an integer.
The result is a pure fraction.
On entry
x must be placed in the accumulator
and p must be placed in $Q E X P+53$
p is not preserved by QEXP

Entry is made by
11. exp

8 EXP +1

On exit
the result is in the accumulator
and in QEXP +54
x is in QEXP +52

QEPP must be declared as a global identifier in all blocks of the uevis program which refer to it.
6.4. ERROR INDICATIONS.

If $x \geq 0$ or $\mathrm{p}<0$ QEXP will punch the message "QSM ERROR 4" wing the ERROR subroutine
6.5. TME TAKEN.
$(3.7+0.26 \mathrm{p})$ milliseconds approx, on 903 or 9208 .

Chapter 1: INTRODUCMON

1. 1 Purpose

To perform arithmetic operations upon double-length fixed point numbers (x) in the range

$$
\because-1<x<1-2^{-34}
$$

1.2 Summary

The double-lengti number routines are interpretive, providing equivalents of the machine code instructions and allowing input and output of numbers in fraction and integer formats.

When entered, ODLA proceeds to interpret the instructions in the store locations immediately following the entry in the users area. Thus operations can be performed on double-length numbers by placing in store the corresponding single-length instruction.

1.3 Form of Distribution

QDLA is a STR tape in 900-Scnos Tetacota, and sivenld tee assembled as a block of the user's SIR program.

CHIP CHOP and ERROR subroutines must also be assembled in the user's SIR program.

1. 5 Restrictions

Some instructions cannot be interpreted. See notes in 2. 4.

1.6 Accuracy

With the following exceptions no error is introduced by the routines:
(a) Multiply: maximum error is $+2^{-34}\left(0.6 \times 10^{-10}\right)$
(b) Divide: maximum error is $+2^{-32}\left(0.2 \times 10^{-9}\right)$
(c) Input and output: maximum error is $\pm 2^{-34}\left(0.6 \times 10^{-10}\right)$

Chapter 2 , IUNCTIONS

2.1 Notation

$$
\begin{aligned}
& x(\mathrm{~m}, \mathrm{~s},)=\text { most significant hal of } x \\
& x(1 . s .)=\text { least significant hatf of } x \\
& x \quad=\text { double-length number held in locations } X \text { and } X+1 \\
& \mathrm{p} \quad=\text { double-length number held in the pseudo-accumulator, } p \\
& C(X)=\text { single-length number held in location } X \\
& C(B) \quad=\text { single-length number held in pseudo } B-\text { register } \\
& C(S) \quad=\text { single-length number held in psevdo S.C.R. } \\
& : \quad \text { : means "becomes equal to". }
\end{aligned}
$$

2. 2 Format

A double-length number, x, is held in two consecutive store iocations, X and $X+1$.

Location	Bit 18	Bits 17-1
X	sign	most significant bits of x
$X+1$	0	least significant bits of x

N B. Workwacer
mest \quad
dech.ad '
as ' >2 '
Mot ' >1 '

Negative number representation is by the usual 2 's complement notation. (N.B. bit 18 of $\mathrm{X}+1$ is always zeio).

2. 3 Entry and Exit

Entry is made by

11 QDLA+20

8 QDLA+21
The routine proceeds to interpret the double-length instructions that follow the entry, using pseudo registers which are analogous to the registers in the computer hardware. These pseudo registers are represented in locations within QDLA, as follows:
a pseudo-accumulator(double-length) located in $\frac{(Q D L A+16}{(Q D L A+17}$
a pseudo B-register (single-length) located in QDLAtl8
a pseudo S-register (single-length) located in QDLA+20
Exit is made by placing zero (to) in the location after the last instruction to be intexpreted. Control is transferred to the location following the zero locaiion. The pseudo-accumulator and pseudo B -register are not affected by entry and exit.

Notes

1. 0 instruction

The instruction 00 is interpreted as a terminator for double-length working (see 2.3). tt does not affect the pseudo B-register. The hardware A-registeris set ecual to p(m.8.).
2. 156144 instruction (and 156148).

This must follow by a parameter vord to specify the format used. The next instruction interpreted is that following the parameter word. See 2. 5. 2 for format of parameter word.
3. Modified instructions may be used the contents of the pseudo B-register are added to the address digits to find the address of the operand.
4. Literal instructions may not be used.

2. 5 Input and Output

The 15 instructions corresponding to input and output of paper tape and teleprinter characters in machine code are interpreted as input and output of complete numbers: via the character input and oubput subroutines CHIP and CHOP.

The double length arithmetic functions effectively operate on iractional numbers in the range

$$
-1.0 \leqslant x<1.0
$$

However, the programmer may wish to operate on numbers in other ranges. As with single length working, it is frequently convenient to regard a double length value as an integer (in the range $-2^{35} \leqslant x<+2^{36}$).

Input and output of numbers in this range is allowed, also input and output of mixed numbers which are scaled so that their internal representation is in the correct range. The programmer specifies the scaling constant to be used.

When using input and output of numbers in the additional ranges, the programmer must always remember that the internal representation is in fraction form, particularly when multiplying and dividing.

2. 4 Operations Avaliable

See 2. 1 for notation used.

2.5.1 Claracter Set for Input

Al characters which have a representation in Einternal code 1 are acceptable, Blank, erase and carriage return are ignored wherever they occur.

The following characters are significant in the formation of numbers:

```
digits 0 to 9
decimal point
+ and -
```

All other characters are treated as separatore.
On commencing input, separators are ignored until one of the significant characters is read. Once a digit has been read the occurrence of a separator terminates the number. Thus separators may be used freely between numbers, including letters used for deccriptive text.
2.5.2 Input

The format of anput number determines the way it is processed. A number not containing a decimal point is treated as an integer, N, and stored as the fraction $N \times 2^{-34}$

The range of N is:

$$
-17179869184<N<17179869184
$$

A number containing a decimal point is treated as a scaled fraction, F. If M is the current value of the scaling factor (see 2.5.3.) the number will be stored as the fraction:

$$
F \times 10^{-M}
$$

The range of Fis :

$$
-10^{M} \leqslant \mathrm{~F}<+10^{M}
$$

E may not have more than 10 digits in all.

2.5.3 Scaling Factor

The scaling factor, M, used for input and output is set by an interpreted 6 instruction.

A positive scaling factor is set by instruction:
6 M
A negative scaling factor is set by instruction:

$$
6(8129-M)
$$

Examples:

6. Instruction	Scaling Factor	Number Input	New Content of P
63	+3	12.	0.012
		-123.46	-0.012346
68190	-2	1.5	0.0015
60	+0	-.001234	-0.1234
		0.999	0.01
		-.05	0.999

The scaling factor set on the tape of QDLA is to. However, it is advisable to set the scaling factor explicitiy in all programs, even if factor zero is to be used. The scaling factor is NOT aftectect by entry bo $\&$ exit from QSLA.
2.5.4 Output Format

Numbers are output right justified, with non-significant zeros suppressed and the sign floated (i.e. immediately preceding the first significant character).

Output format is controlled by the parameter word which follows the 156144 and 156149 . This is written as a pseudo instruction: /fk. If / is used (i.e. the parameter word is negative) the number output is preceded by newline. The number f controls the output format as described below, and the address partk denotes the type of number to be output.

If $\mathrm{k}=$ zero the number p is output as an integer:

$$
p \times 2^{34}
$$

This output is independent of the scaling factor. The number output occupies $12-1$ printing positions.

If $k=4096$ a fraction will be printed:

$$
p \times 10 \mathrm{M}
$$

f digits are printed after the decimal point, and the total number of printing positions occupied is $f+\mathrm{M}+3$.

Examples:

CAUTION.

f and M must be such that no move than
10 digits as primes, egg.
Parameter /8 4096
Scale factors +3
will cause 11 digits to bu printed.

No eros massage will be given!

Chapter 3: ERROR INDICATONS

If and error ocurs a mesrage is given by QDLA
wing the ERoR subvotins.

Chapter 4: METHOD USED
4.1 The following eteps are carried out for each pseudo-instruction interpreted:-

1. The address (modified ifrequired) ia placed in 19: of QDLA.
2. The pseudo S.C.R. is incremented.
3. If the function is f control is transferred to location f; of QDLA.

This location contains a jump to the appropriate routine for the operation. The operation is carried out and then the next pseuodinstruction is interpreted.
4. 2 QDLA uses the following locations for the purposes indicated:

$16 ;$ and 17;	pseudo-accumulator
$18 ;$	pseudo B-register
$19 ;$	address (modified if necessary) of
$20 ;$	pseudo-instruction
	pseudo S.C.R. and link for exit

4. 3 Conditional Jumps

7 examines both locations.
9 examines first location only.

Chapter 5: TIME TAKEN

The following times are approximate; and ane for a 903 or $9208:$

Function Number
0
1
2
3
4
5
6
7

8
9
10
11
12
13
14 15

Operation
Set pseudo B-register
492
Add 658
Negate and add
688
Store least significant half
492
Load
569
Store 525
Store scaling factor 555
($p<0$
440
Jump if zero $\quad(\mathrm{p}=0$
581
($\mathrm{p}>0$
482
Jump 509
Jump if negative $\quad(\mathrm{p}<0$
535.5

457
Count in store
467
Store pseudo SCR
539
919-1208
2788-5481
$695+3 \mathrm{~N}$
Acts at the speed of the appropriate peripheral

For B modification add $161 \mu \mathrm{~s}$ to the above times.

Chapter 6: STORE USED

837 Consecutive locations 33 Literals

Chopter t: ExAMPLE of RROGRMM UNING QDLA.

The fateoming cinll hood in a daka bape of postious fractions and punch thes cubes. Ary regative number may tie pistentast bo stepter progrom.
 "CH t/o s/e, $3 / 3 / 40^{\circ}$ " usen:
[start atha chate cropf chope atorb chaty]
START

4	to
5	Chef
5	Chor
5	Chorg

(1, Lolise input subvoubine)
(intralior oulputs subrowtins) (Select ontpot im 920 Telrecres)

STOP
$+0$
(Exit from Q*in)
$4+20$
11 CHORL

W >2 (Dowbelengte arokpace)

QDMATH, $1512 / 69 \quad 900-$ Sung $\operatorname{tad} \mathrm{cos}$

1. UThasuchlot.

IT. FULCTLOH

QDHATL contains 3 subowtines for Dhe catentotor mottamatere function o donth-lengte number:-

These ane dercribed individertiey in sections 2,3, \& 4 betm
1.2. STORE USER.

336 Consecutive locktions.
4 Literets.
1.3. FORM OF 2ISTRIQUTIOM.

QDMATH is o SIR tape in 900-Senen Telecode and should be arsemiks as a block of the wret's SIR proguta.

ODLA and an ERROR subarubine must ablo be arsemtad in the wer's StR progrant.

21. function

To calculate, as double-length fractions,

```
and }\mp@subsup{|}{}{\frac{1}{2}}\operatorname{sin}\pi
```

 \(\frac{2}{2} \cos \pi x\)
 where x is a doublemength fraction It can be run at any program level and in any storemodule.

2.2. ACCURACY

The maximum error is $2^{-32}\left(0.5 \times 10^{-9}\right)$.
2.3. METHOD OF USE \& ENTRY IWSTRUCTIONS.

The operand, x, and the result must be treated by the programmer as pure fractions.

To enable this to be done, QDASIN calculates

$$
\frac{1}{2} \sin \pi x \quad \text { and } \frac{1}{2} \cos \pi x
$$

Note: therefore, that x is the value of an angle as a fraction of 11 radians (180 ${ }^{\circ}$).

A double-length number is held in two consecutive store-locations, the description below gives only the first of the two.

Entry (for assembly by SMR)
place $x(1.5$.) in QDASN+99
and $\quad x\left(\mathrm{~m}, \mathrm{E}_{8}\right)$ in the accumulator \& optionatly in QbASint 9 and enter 11 QDASIN
$800 \mathrm{ASIN}+1$
Exit $\quad \frac{1}{2} \sin \pi x$ in QDASMN +102 and in QDLA. 16
$\frac{1}{2} \cos \pi x \operatorname{in} Q M A \operatorname{SIN}+104$

```
N.B. The instruction pair
IIODASIN
    8ODASIN+$
```

must not be part of a pseudouprogram interpreted by $\cap D L A$.

QDASIN must be declaxed as a global identifier in all blocks of a SIR program which refer to it.

2.4
 TIME TAKEN

The time taken is approximately 50 milliseconds, on 903 or 920 S .

```
3. CDASORT (B. 106A)
```


3.1. FUNCTION

To calculate, as a double lengh fraction, the squaze root of a double-length fractions a.
th can be rum at any program level and in any store module.

3. 2. ACCURACY

The maximum exror is $3 \times 2^{-34} \cdot\left(0.2 \times 10^{-8}\right)$

3.3. METHOD OF USE \& ENTRY INSTRUCTIONS.

A double-length number is held in two consecutive locations: only the first location is given below.

Entry

place a in $Q D A S Q R T+44$
and enter $11 Q D A S Q R T$
8 QDASQRT+1
Exit
$\sqrt{ } \mathrm{a}$ in $\mathrm{QDASQRT}+46$
N.B.

The instruction pair
11 QDASQRT
8 QDASQRT+1
must not be part of a pseudo-program interpreted by QDLA.

QDASQRT must be declared as a global identifier in all blocks of a SIR program which refer to it.

3.4. ERROR INDICATION

If a<0 them QDDASQRT will punch the message
"QDM ERROR 1" wing the ERROR subwoubina.

3.5. TIME TAKEN

Special Cases
$\begin{array}{ll}a=0 & 570 \text { microseconds. } \\ a=1-2^{-34} & 1053 \text { microseconds. }\end{array}$
General Cases
Approximate time taken is
$3.0+12.5 \mathrm{n}$ milliseconds
where n is the number of iterations necessary.
These times are for a 903 or 9208 .

4.1. FUNCTION

To calculate, as a double-length fraction

$$
\begin{aligned}
t=(1 / \pi) & \tan ^{-1}(x / y) \\
\text { and } b & =(1 / 2 \pi)
\end{aligned} \quad \text { true bearing, }
$$

where $x_{8} y$ are double-length fractions.
It can be run at any program level and in axy store-module.
42. Accuracy

The maximum exror is $2^{-34} \quad\left(0.6 \times 10^{-20}\right)$
4.3. METHCO OF OSE \& ENTRY INSTRUCTIONS.

All numbers must be treated by the programmer as pure fractions.

To enable this to be done QDAATAN calculates

$$
t=(1 / \pi) \tan ^{-1}(x / y)
$$

Note, therefore, that t is the value of an angle as a fraction of 11 radians (180°).

A double-length number occupies two consecutive locations; only the first is given below.
Entry (for assembly by SIR)
Place x in QDAATAN+136
y in QDAATAN+138
and enter $11 \Omega D A A T A N$
8RDAATANTI

Exit

t in \quad DAAATAN+142

- bin ODAATAN+146
$b(m, s$.$) in the accumulator$

Note. The the bearing is found by taring
x along the easterly axis
y along the northerly axis
and measuring the angle in a clockwise direction.
N. B. The instruction pair must not form part of a pseudo-progxam interpreted by QDLA.

QDAATAN must be declared as a global identifier in all blocks of a SIR program which refer to it.
4. 4. ERROR INDICATION

If $\mathrm{x}=\mathrm{y}=0$, them QDAATAN will punch the message "QOM ERROR 2^{n} using the ERROR subroutine.
4.5

TIME TAKEN
Approximately 42.4 milliseconds, on 903 or 9206 .

1 INTRODUCTION

1.1 Purpose.
 QF is used to perform operations on floating.

point numbers.

1. 2 Summary.

QF contains routines for operations corresponding to all the fixed-point operations except the function 15 (Functions 3 and 6 have special meanings in QF).

When entered, QF proceeds to interpret the instructions in the locatic as immediately following the entry -point in the user's program. Thus, operations are performed on floating-point numbers by placing in store the corresponding fixed-point instructions.

Two formats are available for floating point numbers (see Paragraph 2.2), QF mayberun in any program level.

1. 3 Form of Distribution.

QF is a SIR tape in 900-Series Totencte, and should be assembled as a block of the user's SIR program.

An ERROR subroutine must also be assembled in the users SIR program.

If QF is wised without QFMATH then the following short tape should be loaded AFTER QF, but

BEFORE any cher tape (other than QF $/ / 0$ or the shout tape loaded instead of it desisted below):
((DUMMY OF MATH)
SORT LN EXP SIN COS ARCTAN
+0
8 ERRF
(i)

Similaty is QF is uses without QFI/O, tenon the

following shot bate should the load MeTER QP, but BEPORE any doe Gape Cote than QRMATH or the shout lupe loads intaset of it duribed above) :-

((Dumbly po 7/0)

QFIE PSTAND IUINT URL PET

8 ERR

(ii)

1.6 Accuracy.

If the result of the operation is y, multiplication gives a maximum error of $2^{-34} y$, division gives a maximum error of $2^{-32} y$. All other operations give a maximum error of $2^{-35} y$.

2 EUNCTIONS

2. 2 Format.

One of two formats may be used to hold a floating-point number in store. Normally the packed format is used, but the unpacked format allows a wider range of numbers and slightly greater accuracy. The two formats are summarised in the table below. In the unpacked format; the mantissa is a double-length fraction held in two consecutive locations and the exponent is a single-length integer held in the next location. For the packed format, the mantissa is truncated and the exponent held in the seven least significant bits of the second store location. In this case the exponent must be in the range -64 to +63 .

Format	Location	Bit 18	Bits 17-8	Bits 7-1
Packed	X	sign	most significant bits of mantissa	
	$\mathrm{X}+1$	0	least sig. bits of mantissa	exponent
	$\mathrm{X}+1$	0	most significant bits of mantissa	

N. B.	
Workspates	
	ust bes
	eclate d
	${ }^{\prime}>2^{\text {a }}$
	' >3 '
	T ${ }^{\prime}>1$,

Negative number representation for exponent and mantissa is by the usual 2's complement notation.

All internal working of QF uses the unpacked

format.

Examples of floating point numbers in the two foxnats:

Number	Locn	Packed	Unpacked
$\begin{aligned} & 0.25= \\ & 0.5 \times 2^{-1} \end{aligned}$	X	010000000000000000	010000000000000000
	$x+1$	000000000001111111	000000000000000000
	$x+2$	Not Used	1111111111111111
$\begin{aligned} & 1-2^{-37} \times 2^{63} \\ & \doteqdot 9.2 \times 10^{28} \end{aligned}$	X	01111111111111111	01111111111111111
	$X+1$	011111111110111111	011111111110000000
	$x+2$	Not Used	000000000000111111
$\begin{aligned} & -1.0 \times 2^{-64} \\ & \vdots-0.5 \times 10^{-21} \end{aligned}$	X	100000000000000000	100000000000000000
	$X+1$	000000000001000000	000000000000000000
	$x+2$	Not Used	111111111211000000

2. 3 Entry and Exit. Entry is made by
$\left.\begin{array}{rl}11 & Q F \\ 8 & Q F+1\end{array}\right\}$ to use packed format

QF proceeds to interpret and execute the pseudo-program using
a pseudo-accumulator (FPA)
a pseudo-B-register (FBREG)
and apseudo-S-register (QF)
See Paxagraph 2.4 for the effects of each function.

Exit is made by placing to in the location after the last instruction to be interpreted. Control is then transferred to the location following the zero location.

The Machine Accumulator and B register are not preserved. The pseudo-accumulator and B registers are not affected by entry and exit.
2.4 Available reversions.

Sss panderaph 2.1. for notation beet.
Table 1

Notes
(1) The instruction 00 is interpreted as a terminator for floatingpoint working (See Paragraph 2.3).
(2) If packed format is in force during interpretation of a 3 or 5 instruction, then a test is made whether

$$
-64 \leq f(\exp)<+64
$$

If $\dot{f}(\exp)<-64$ then $x:=0$ and the next instruction is interpreted.
If $f(\exp) \geq+64$ then an error indication is output (See Paragraph 3).
(3) \because These.instructions operate on single word items. The instructions 7, $8 \& 9$ may jump to another interpreted instruction: they must not jump out of the interpreted program except via a terminator.
(4) If an attempt is made to divide by zexo an error indication is output (See Paragraph 3).
(5) The results of the following instructions are always standardised:

$$
1,2,12,13,14
$$

The instruction 140 may be used to standardise the "contents of the EPA.
(6) Modified instructions may be used and, if they are, the contents of the pseudo B-register are added to the address digits before obeying an instruction.
(7) Literal addresses may not be used i. e. constants must be stored in the correct format by the user.

Table 2

The address of a 6 instruction determines its meaning.

Function	Effect
61	Instructions interpreted after this as sume packed format.
62	" ! " " " unpacked "
63	Convert a single-length integer to a floating-point number and place the result in the FPA. Location QF +3 contains the address where the integer is held.
64	Form the integral part of the number in the FPA. Location $Q F+4$ contains the absolute address where the (single-length) integer is to be placed. This routine always rounds down.
65	Convert a fixed-point fraction to a floating-point number and place the result in the FPA. Location QF +5 contains the absolute address of the (single-length)fraction.
66	Convert the number in the FPA to a fixed-point fraction. Location $Q F+6$ contains the absolute address where the (single-length) fraction is to be placed. This routine always rounds down.

The instructions 61 and 62 do not convert numbers;
they define the action following instructions:-
In 63 to 66 the arguments and the addresses in $Q F+3$ to QF +6 are unaffected. Error indications are output if an impermissible address is used or if overflow occurs. (See Paragraph 3).

An integer is held in INTI and a real number in RL2
The following section of program places the floating -point form of the first in RLI and the enticer of the second in INT2.

(SET ADDRESSES IN OE	WORKSPACE)	
4	PSI	(PSII holds the address of INTI)
5	QP +3	
4	PSI	(PSI2 holds the address of INT2)
5	QP +4	

(NOW PERFORM CONVERSIONS)

11	$Q F$	(ENTER QP)
8	$Q F+1$	
6	3	(INTI in the FPA)
5	$R L 1$	
4	$R J 2$	(RL2 stored as integer)
6	4	(RETURN to normal working)
+0		
8	$;+Q$	

PSID	0	INTI
PSI	0	INTR

3 ERROR INDICATIONS

by QF using the ERROR subroutine. message is given

Message	Significance
QF ERROR 1	Impermissible instruction QF ERROR 2 or ling -point over-flow QF ERROR 3
QF ERROR 4	Integer overflow

4. METHOD USED

The following steps are caxried out for each pseudoinstruction interpreted.
(1) The pseudo S-register is incremented.
(2) The function and the addxess (modified if required) bits of the interpreted instruction are stored.
(3) Control is transferred to the appropriate routine to execute the instruction.
(4) Control is returned to the interpreter (via a standardising routine for instructions $1,2,12,13,14$).

Subroutines from $903 /$ Algol have been used for all arithmetic operations.

5 STORE USED
The floating-point package occupies
672 consecutires locations \& 27 literals.

6 TIME TAKEN

The following times are approximate:-

Function Numbe:	Operation	Times in Microseconds
0	Set pseudo B-register	440
1	Add	2150 to 3850 (average $2500-$ see Note 1)
2	Negate and Add	2480 to 4180 (average $2800-$ see Note 1)
3	Exchange	1980 packed or 1810 unpacked
4	Load FPA	770
5	Store EPA	- 770
6	Specifies format for the following instructions	440
7	Jump if zero	440
8	Jump	440
9	Jump if negative	440
10	Count in store	400
11	Store pseudo SCR	440
12	Multiply	2140
J 3	Divide	4300 to 6000 (average 4700 see Note 1)
1.4	Shift	$\begin{aligned} & 810 \text { to } 2510 \text { (average } 1210 \text { - } \\ & \text { see Note } 1 \text {) } \end{aligned}$
	ENTRY	50
00	EXIT	150

- Notes (I). The time depends on the number of places the mantissa is shifted to standardise the result of the operation. The average given assumes a shift of 4 places.
(2) For modified instructions add 125μ s to the time taken.
(3) The times quoted above are for a 903 oo 920 B .

Chapter 1: MNTRODUCTION

1.1 Purpose.

Thee e programs provide routines for general number input and output. The format conventions are those of Eliot t Algol.

1. 2 Method of Ne.
\because The routines are entered va QF.
2. 3 Summary.

The number input or output may be stored an a floating point number or as an integer, input and output being performed lis character subroutines ClIP and chop.

1. 4 Accuracy and Range.

The maximum error is of the order of 10^{-3}.
The range of a floathg-point number, x, fog en
approximately by
$-9.2 \times 10^{28}<x<9.2 \times 10^{18}$
The range of an integer, n, is given by
$-131072 \leq n \leq+131071$

1.5 Form of Distribution.

The programs are diatributed as a STR mnemonic tape. The tape contains both input and output routines: it must be as sembled after QF but may be preceded by floating point mathematical routines: no other programs may be assembled between $Q F$ and the input/output routines.

CHIP, CHOP, and ERROR Subroutines must also be assembled in the user's SiR program.

Chapter 2: EUNCTMONS

2. 1 Entry and Exis.

The routnes are entered by interpretahon by Q of a
 one inctraction after oxecution; othexwise return is made to the next preudo-ingexuction.

The functiona avainble and the conesponding call are listed below. Input/ouput inatructions are aboumed to refer to reat numbere until a 67 instruction is intexpreted.

Function	Pseudo-Inetruetion	Remarks
Input a number	152048	input via the charader input subrowine CHIP .
	152052	format as described in 2. 2.
Output a number	156141	output via the character output subrouting CHDP. format as currently set
	$15 \quad 6148$	
Following input/ output instructions refer to integerb	67	Bee note 1; the effect of
Following imput/ output instructione refer to real numbers	68	
Reset presumed pettinge	60	See 2. 3 for description of presumed settings
Set new parametern	68191	This instruction muat be follower by a patameter wordi See 2. 3.

1. An integer is input to the location woe address is in 0 orth An integer ia output from the location who be address is in $\mathrm{QR}+3$.
Real numbers are input on output from the Floating Point Accumulator.
2. An impermisoble address gives an error indication (See para. 3)
3. A number is treated as zeal or integer depending on the entry used, not on the format.

Example

The following section of program inputs an integer, $-n$, followed by n real numbers. Their sum is output in Exeepoint (8) xqrmat; the CHIP, CHOP \& ERROR mutines contained in "CH 1/0 s/R S1/3/70"hane treen used:-
[ENTRY QP CHIP
CHOP CHOPS CHOP CHORE]

$11 \Omega \mathrm{Q}$
$8 \quad Q F+1$
60
$6 \quad 7$
$15 \quad 2048$
(COUNT: $=-n$)

LOOP
$15 \quad 2048$
1 SUM
5 SUM
10 COUNT
4. COUNT

9 LOOP
4 SUM
15648
2. 2 Input Tomas.

The character set accepted io ab follows

```
0123456.7894-. 10
<mull><aclete> <carriage retum>
<halt>
<space> <newline> all ohner intemal
    U cods characterr.t
```

Characters on the first line may appear in a number.
Characters on the second line are always ignored.
If \langle hall $>$ is read during execution of an input instruction the program waits.
Characters on the fourth line axe treated as separators between mere and are otherwise ignored.

Numbers may be signed or unsigned and may be punched in any of the conventions of 903 Algol. Note that + or - cannot terminate a number.

The number input is treated as integer or floatingpoint according to the entry-point used and not according to the formatinput. An integer must not exceed 13107) in magnitude (fractional parts are rounded to the nearest integer).

Example of numbers that may be input by this program as real numbers

104	+500	-2	500000
1002	10234.56		200.0.
$4_{10} 1$	$5_{10-5}-5$		$+2.75_{10}+10$
10^{2}	-10^{+05}		

2. 3 Output Formats.

In the following description the presumed settings after initial anombiy are given in square-brackets. These setting apply to an output unless changed by a 68191 instruction and are reset by a 6 instruction. The formats satisfy the conventions of Elliot Algol.

The parameter word after a 6 8191 instruction is a pseudo-inetruction

BEN
2.3.1 Lay-Out. [newline]

This affects both real and integer format.
For newline $\quad B=1$
For sameline $\quad B=0$
2.3.2 Real Format [freepoint(8)]

For freepoint(n) format $F=0 \quad N=n$
" aligned $(m, n) " \quad F=1 \quad N=16 m+n$
" scaled(n) " \quad =2 $\quad N=n$
For aligned format $m+n \leq 15$
For freepoint and scaled format $n \leq 8$
The integer format is not changed by change
of the real format.
2.3.3 Integer Format [digit sf)] $\quad \begin{aligned} & \text {.For digits(} n \text {) format } \quad F=4 \quad N=n \quad ; n \leq 6\end{aligned}$

The real format is not changed by change of the integer format.

An impermissible parameter word causes an error indication to be output. (See para 3).
2. 1 Accumulators for Input and Output.

Real numbers are input to and output from the FloatingPoint Accumulator of QF.

Integers are input to and output from store locations: these operations are related to the floating-point operations

$$
63 \text { and } 64
$$

3. L Standard medication.

F an error occur a massage is given ty of $1 / 0$ using the ER Rok subroutine.
3.2 Exroxg Detected.

Note 1. If the number being input has a value greater than $10+100$ approximately, floating point overflow occurs. This error will most probably be caused by a wrongly punched data tape.

3. 3 Alarm Printing,

If the number to be output is too large for the format specified, alarm printing occurs. This is in scaled format and uses the came number of characters as the format demanded. If this is impossible His output.
egg. 1. format demanded: aligned (4, 3)
numbers to be output: - 35286.141
output obtained: $\quad-3.53_{20}+04$
e.g. 2. format demanded: aligned $(2,1)$
number to be output: $\quad 123.45$
output obtained: H

Chapter 4. STORE USED.

QF I/O occupis 784 conscutive lorabions. and wess 43 itiverals.

QFMATH 20/E/69 900-Senes Telecots

1 NNTRODUCTION

1. I Purpose.

To compute cextain mathematical functions of floating-point numbers held in the floating-point accumulator (TPA). The functions are performed by sub-routines entered via the floating point package (OF).

1. 2 Summary.

The functions provided are squarew root, sine, cosine, arctangent, naural logarithm, exponential.

1.3 Accuracy.

The maximum error is 8×10^{-8}.
1.4 Form of Distribution.

The routines are distributed as a singie SIR mnemonic tape. This must be assembled immediately after the floatingpoint package ($Q F$), but may be preceded by QF $1 / 0$.

The routines are assembled as part of the block QF and are entered as floating point subroutines. They may be run at any program-level and in any store-module.

2 FUNCTIONS

2.1 Entry and Exit.

Entry to all functions is made by a standard sub-routine entry which is interpreted by $Q F$. On entry the argument is in the FPA which also contains the result on exit. (This result may be the effect of recovery after an error).

The available functions and their entry pointo
are listed below:
2. 2 Example.

To calculate the function
$y=\exp \left(x^{2}\right)^{\frac{2}{2}}$
using packed format for the users workspace.

```
.
i1 QF (ENTER QF IF NECESSARY)
8 QF+I (ASSUME PACKED FORMAT ON ENTRX)
4 X
12 X (FORMX个2)
11 EXP
8 EXP+1 (FORMEXP [X&2])
11 SQRT
8 SQRT+1 (FORM{EXP [X & 2]}&\frac{1}{2})
Y Y
```


2. 3 Global Identifiers.

The following labels are declared as global identifiers on the library tape and must be declared at the head of all blocks of the user!s program which refer to them.

```
QF
SQRT
SIN
C\varnothingS
ARCTAN
LN
EXP
```

3 ERROR INDICATIONS
If a routine is entered with an impossible operand then an error is displayed. by Grate using the ERRor subroutine. The detected errors are listed below.

Function	Error Message	Cause (xis the argument of the function) logarithm square root exponential	QFM ERROR 3 QFM ERROR 4

4 sTORE USED

500 consecubur locations \& 24 literals.

5 TIMES
Typical times are; on a 903 or 9208 :

SORT	5.3 millisec.
SIN	15.5 millisec.
COS	15.5 millisec.
ARCTAN	24.0 millisec.
LN	22.0 millisec.
EXP	13.0 millisec.

QFM-3.

1. INTROSUCTIOR.

The tape "CH I/OtLEGTAfE slR" comprises 3 Subroutines punches in $900-\operatorname{sen} \alpha \mathrm{T}+\cot$:-
(a) A Subroutine for the unpot, of undiuiduot characters in $903 / 900-S c n e s$ Telectet or 990 Telecthe from papertane, called, CHZP!
(b) A subroutine for the output of indsndent character Le $903 / 900-$ Cen Telecte or 900 Recent, or in Legible form on paper tape, called "CHop"
(c) A subroutine for giving error indications, called, "ERROR".

These the ne subroutines are described individusty in the following sections.

Many programs contain "built-in" routine bo perform the functions performed by these subroutines. By using
the above routines instead of "built-in" ones all input \& output instructions can be oursided in tape--handelting programs and two advantages are obtamide :-
(1) Writers \& now programs can lift the above Subroutines "Of the shelf" instead of writing a "fuitt-in" routine.
(2) Users es existing programs can essive change them to operate in a different Telecode or via a different peripheral, by writing just ont name character subormbina.
2. CHIP; CHARACTER INPUT, SUGROUTINE.
2.1. Fundion \& entry ustructions.

When CHIP is entered, using, the instructions:11 CHIPS
it reads (or, more stridty, poppers 60 rat) one character from the peeper tape poser. On exit the intend e code number corresponding to the character (see the table in, section 5') is in the accumutar and also un the location "chip" (which is declared within the subroutio).

The user's program MUST NOT altar the contents of the location CHIP.

The tope being read may be in the following codes which are described elsewhere:-
"900-Series" Telecode
(or ISO or ASCII, with even partly)
903 Telecode
920 Telecode
To enable the subroutine to decide which Telecode is being read, all tapes must start with a newline, carriage return, or linefeed symbol \& the appropinate Telecode.

To indicate that a "new" tape is about to be read, the user must set the location "CHIPF" (which is declares within the subroutine) bo +0 , before mating the first character of the tape. The subroutine will set CHIPF to a non-zero value when it is entered.

Auloush, bo the user the chip sultowhene appease to kat one chandler from the bye--reader chanever entect, it acbatly buffers He best lime-by-Liss ire. when fist enters L leads a whole lina of tape who an ares up bo the end ob ant of a haltrode symbol, and exiles cite the fret dem ob the arrow b the accumulator (and the location "CHP") On subseppant entries, subsequent dent as read from the cray until it is emply. therefor another lens is nato l in.

Thess this subroutine is suitable for use with non stop-on character wonders of up to $250 \mathrm{c} / \mathrm{s}$, irrespective of the spared of the user's program, provided that each newline or linefeed symbol is followed by some blanks.

Ale tapers stormed end with a hallocts symbioses; if thin is not done the last line of the tape will ba "lost" in the buffer array. the subroutine must Nor the entranced AFTER finding a habtcode until chief has farm reset to vire.) It is a raguicoment of some subroutines which use this subroutine that the halfcerte is preceded try a newline, linefeed, space, or tab symbol, to terminate the last them of data on the bree; otherwise this teem is lost.

Blanks and erases are ignored evengwher, as is the carriage neth symbol except in the determination of the Telecothe of a new tope.

Topes ane wad in Mots 3. with a parity check.
2.2. Special Charncters.

The CHIP subroubine performs no coda-conversiono on 900 -senee Telecode or 903 Telecole bxpes other. Thaw sbipping brocle 8, to obbain the intemob code value.

Thus, for beper punchad in $900-$ Seniss code;-

wheraas, for baper punchad in 903 code:...

Since the symbots " \backslash " and " $\frac{1}{2}$ " are not whot in existing softurxuse it is suggented that they are wnsidered to bs bypograptical variants of " $y^{\prime \prime}$ ", and that programs searching for " Y " seach for folls value 35 and 92 .

Since the symbot "@" is not used in existing sotturare it is suggated that it is considesed to te a typographiced vaviant of "" and thate programs searthing for "I" seaveh for both valuses 64 and 96 .

Since the symbet "?" is wot used in exitivy sotturere it is suggerted that it is consideret to be a bpogrthicel variome of "o".

The chip subroutine converts 920 Telecoms to internal coda toy means of a look -vp bite, in which the following conversions are made:-
$\left.\begin{array}{cccccc}" \sim " & \text { will be given value } 34 & 3 . e . ~ " " ~ " ~ \\ " 0 " & " & " & " & " & 35\end{array}\right)$

Arse the following compound symbols using the non-- escaping vortical bare, will be reougriseal.

Vertical bor followed ing characters other thar s S, \leqslant or \rangle (e.3.2); Horizontal bar, and binary values having wo 920 Telacoble significance, will give an ensor indication.
2.3. Possible variants to CHIP subroutine.

The Che subroutine could be modified in several ways whilst retaining an identical or nem-identiced interface with bede user's program. Possibilities ans:
a) Versions operating in dew Telecelss, e.g, Telex 5-hole code. Versions operating in several Teluceder may nad a location "CHIPC" holding a number, set by the user, determining the input code currently in we (like "CHApe" in the "CHop" subvitine, in section 3)
b) Veriams operating via other peripherals, e.g. on-line teleprinter. Versions capable of operating via most than one peripterst would require a lacation "CHIPD" specifying the address of the peripheral.
c) A version NOT using a line-at-a-time buffer array, for programs capable of driving the reader at full spent, or for use with stap-on-character readers. This would same about 80 locations.
d) A verve containing a facility for printing the current contents of the line buffer array via the "crop" subroutine, for use in error massages.
e) A verivon with limited line editing facilities, e.g. was of the symbol " $\leftarrow "$ " to delete the comment contents of the buffer array.
3. CHOP; CHARACTEN OUTPUT SUBROUTINE.
3.1. Function \& exby instructions.

When cHop is entered, using the insbuctions:11 CHOPL
it punches a character once or seurat times on the peeper lope puncture. To punch a character e once, the accumulator should contain the internal code number comesponiting to the character (see the table in Section 5), when the subroutine is entered.

To punch the same character several times the accumulator should contain C-128.N whats C is the internal code number of the character and N is the number of characters required. (This method cana in fact also be used to punch a character once).

The effed of entering the subroutines with the accumulates in the range +128 to +131071 is undefined.

The tape may be punched in tine of the fothoning codes which ane described elsewhere :-
"900-Serias" Telecude
(or ISO or ASCII, write even parity)
903 Telecods
920 Telecote
or in Legible Tape form.

To indicate to the sutaroutine which Teleark is to be punctrat, the location "CHOPC" (which is declated witting the subroutines) shout h be set by the war below the subroutine is entered to one the fallowing values:-

$$
\mathrm{CH} 10+2
$$

tl for "900-Seris" or 905 Tekcott
40 for 920 desserts
8400000 for Legit Take
and the egest of using ether valuer is undefinat.

The subroutine will prot 4 blames a sw ever new int of timecad symisot.

The subroutine will punch $18^{\prime \prime}$ os blanks before the first charater on a taps and after the last character on a tape.

To indicate brat a "now" tape is about bo be punchoct, the user must set sous location "Chopf" (which is declared within the subroutine) to +0 , before punching the first character of the tape. The subroutine will set chore to a man-zoro value when it is everest is.

To indicate the end of a tape, all tapes punched should end write a haltcode symbol, Even is the culpa is in legible type form. If these in not done, the $18^{\prime \prime}$ of blanks will not be punctured.

On exit from the subvoribine ter value of the arsmonder is the intemah code nomen of the chanter just puncher. (Thess bee mos' significant 10 bits of ter accumulator will be zero.)
3.2. Special Characters.

The chop subroutine performs no wide converion on 900-Sents Telecole or 903 Telecode tapes other than the insertion of evem-panily in track 8 .

Thus, for topes punches in 900 -Seven cote:-

whereas, for tapes punched in 903 cole:-
Value 35 will be punched " $\frac{1}{2}$ "

$"$	63	$"$	$"$	$"$	$" 10 "$
$"$	64	.	$"$.	$" \searrow "$
$"$	92	$"$.	$"$	$" \nmid "$
$"$	96	.	.	.	$" @ "$

Since the symbols " \backslash " and " $\frac{1}{2}$ " ane not used in existing softurace it is suggested that they ane considered to be typographical variants of " \mathscr{F}^{\prime} " and teat programs punching "里" use value 35 .

Since the symbol "@" is not used in existing softarere it is suggested that it is considered to be a typographical variant of "t" and that programs pounding "V" use value 96 .

Since the symbol "?" is not used in existing softurare it is suggested that it is considered to be a typographical variant o "10".

Tha clup sulwhthe convelt, Utemal ade 10

The interal coles os (3), and $<$, abo the intemse uth naing no allocoted manungs will gine an enor wolacien I \& ws 10 oubpe 120 Tolecorts.

The CHOP subroutine wes a sek of tables to convert internal code characters to legible tape potterns, in which the following comversions are made:-

Vatue 20 , i.e. (1), is ignotoh, (excopt that it denoter the end of the pape and thus causer $18^{\prime \prime}$ of blamk to be punchest)

Volues O to 31 (excluding 20), which includes (1) and (D), with be punctuad as value 32 , i.e. (S).

Volues 9660124 will be puncluct as volues 64 to 95. Thes Vavar-cists. letters aill be punchad in tho same form as yper-care laters.
33. Posthe varints bo citop subroutine.

The Chor subruntine could be movilid un seural way ahlt rebting an dential or noar-identicel unterace with tee urct prognm. Postluth ane-
a) Verson operaty, in other Telecoles, e.g. Teles 5 -hok oode, Verinn operating, an one Telende wonla not need, bhe Locolon "chopc".
b) Veriow operating via otho penpleslt, e.g. on line telphimer. (This version need not output tbanks ate cach hewaline, or at the start and end of the lape; to same bime). Vevions capalde of operating via move than one perphare cuould nequire a location "chops" specifying the odthes of the peripheral.
c) A vervion sontaining no legible tape ontput, This would saves about 260 locations.
d) A verion contrining legible tape output in which the lower-cise lettron are punchad as 5-back high vervions of the opper--case letter.
4. ERROR; ERROR INDLATIONS SURROUTHE
4.1. Fmetion \& en dy instructions.

The subroutine 'ERROR' puncher an eros massage in legible tape form en the pepertape punch, precelst ant folkowat by $18^{\prime \prime}$ re plant tape.

The subroutine is entered by the instructions:-

$$
\begin{aligned}
& 11 \text { ERROR } \\
& \text { O ERROR }
\end{aligned}
$$

and the message to tee penchant should be the iv the locations following the entry instructions, in alphanumaine group form.

There is no limit to the length of the massage. The end of the message should be indicated by a fult-sbop within the alphanumeric groups. (The full -stop ail not be punched on the legible tape).

Any character hailing internal cods value 32,35,36, or 38 to 93 can be punched in the menage (seen the table in section 5)

After punching the emo message, this version of the ERROR subroutine enters a DYNAMIC STOP. (To continue attis erose intimations, see section 4.2.)

4.2. Conturusion after error indications.

If the user wishers to continuer after on s emo indication has been given, the user's progenen sturnidt contain an entry point which jumps bo bes intimations

$$
\begin{array}{ll}
0 & \text { ERROR } \\
\hline 8 & 1
\end{array}
$$

After punching ans error message, the ERrime subroutine cite enter a dynamic stop. It the above envy point is then used, the error subroutine will perform a conventional subroutine exit to tin location after the crore message. The user should ensue that this location contains a stables recovery routine.
(Note that hes call of the ERROR Swliwutive
make by chip and chop does Nor contains an
cine recovery routine.)

6. STORE USED.
" CH I/O + Lectape $\operatorname{s/R}$ " user:-

681 Consecutive locations,
40 Literals.
7. ERROR INDICATIONS.

If an error occurs a massage is given using the ERROR subroutine.

8. 1. Chit.

The fallowing program will count how often the symbol " $"$ ". occurs on a tape:-
(EXAMPle of CHIP)
[start chip ghipl chips]

Start	4 +o 5 Ching	
	5	count

LOOP 11 CHIP
8 Chile
1 -20
7 ; +0
1-26 (chip-46, Test for full stop)
7 ; +2
8 lop
10 count
8 Loop
COUNT >1

```
8.2. CHOP.
```

```
The forlowing prograsm will oubput the work "Programme" on a newtine in 900-senes telecode:-
(CEXAmple of chow)
[START CHOPC CHOPF CHORL CHOPE]
    START
                                4 +1 
                                40
                                5 CHOPF
                                5 \mp@code { c o u n t }
Loof
                                O count
                                <4 MESSAGE
                            7 i+0
                                    11 CHOPL
                                    8 CHOPE
                                    1O COUNT
                                    8 Loop
MEssAGE
```



```
count
\(>1\)
```

```
The follening progrem will puncte the error massage "unloEATED IDENTIGIR".
```

```
(UEXMOB* OF GRUOR)
```

(UEXMOB* OF GRUOR)
[EL ERrorl ERRORE]

```

8.4. CWIP \& CHOP

The following programe may be used to gin sevenos topes into one bape. If assemblet frem 8, tha euby porints ater:

8 to read in first taps, for oubput in 900-Saines or 903 Telecole.

9 to read in first tape, for ontput in 920 Tetecele 10 bo read in subsegpent txpes
11 Afrer vanting ina last bpe.
(CEAMALE 8.4)
[CHPF CHPL CHPE CHIP CHOPC CHOPF CHOPL CHOPE]

```

8.5. CHIB, chOf, \& tRKOR.

```
 and pundt the usult un 900 -Scim Teleode. (CERMRLE 8.5)
[START CHIPF CHIPL CHIPE CHIP CHDPA CHOPL CHOPE CHOPC]

START
4 H1 CHOP
5 to
5 CHOPF
5 CHPF

TEXT

COMHENT

ERROR


\subsection*{8.6. CHop used bo punch Rtphanumaic Grous.}

\author{
The fothouing print-y is of the EnRoR subvoutive, which shows hou chop may be whed to print Alphansmaric Groups.
}

\section*{( (MRROR ROUTMTE)}
[ERPRORL RRRORE CHOPF CHOPL CHOPE CHOPC]
(Prints out the exror message following the entry instmetions in alphanumeric group form, untit a hull-ston is found, then stops. The message is given in legible tape form)

ERRORI \(>1\)
\begin{tabular}{lll} 
ERRORE & 4 & to \\
& 5 & CHOPF \\
& 4 & 8400000 \\
& 5 & CHOPC \\
& & \\
NEXTWD & 4 & -2 \\
& 5 & OOHNT \\
& 10 & BPRNR \\
& 0 & EDRORL \\
& 14 & 0
\end{tabular}

contry \(>1\)
MORD \(\quad>1\)
1. INTRODUCTION.

The bope "CH I/O S/R" is the sama in functior as "CH I/OtEEGTAPE str", desenbed dsewhere, aitt the fotheng diserencts:-
(1) "chop" cannot be uset bs oubret in lagitle tape formss thus possible values of "CHOPC" are resbricted b:-
+1 for \(903 / 900\)-genis Telncobe
to for 920 Telecode
and the eqect of using other oatwes, including 8400000, is undefined.
(2) As a comequance of (1), "ERROR" cannob giua error indelications in legible tape formo; insteas they ares givers in tha cursent cubput Telecocke, as detemined by "chopc", preceded by (1) and fothowet by (1).
(The purpore of bin variant is to reduce the amount \& slores requisis, by omiting the legible brepe pobterns usict occupy a conrideable amount oo store).
2. STORE USED.
"CH lo sla" waes:-

422 Conscative locations,
36 Literals.
"OPTIMISED MATHEMATICAL SUBROUTINES" IS \& SIR tape in 900 -Sens Telecoms, containing 3 subroutines separated by hattecotes. The subroutines ane:-


They are all suitable for use on any program Laue,
1.2. TOTA STORE USED.

\section*{The total store used by the above 3 subroutines is :-}

143 Consecutive locations, 22 Literals.
2. SINE \& cosine SuSROUTLE
2.1. Funcrion

A subowinse for finting ters sine or cosine ot an angle (or bate)
2.2. METHOD OF USE \& EDTRY INSTRUCTIONS.
(1) There are 3 sets of entry vostmotions, for calculating sine, cosine, of soth. Whidtenter endy is usth tes accumulober strould corbiur the andes, scalesk by \(180^{\circ}\) or \(\pi\) rabianns on entening.
E.G. +.5 mepesents the angite \(490^{\circ}\) or \(+\pi / 2\) \(-.25\)
(2) We instnetiom
\[
\begin{aligned}
& 11 \text { SINL } \\
& 8 \text { SINE }
\end{aligned}
\]
pat \(\frac{1}{2} \sin s\) in tee \(\operatorname{Accumulator}\)
(3) The instructions
\[
\begin{array}{ll}
11 & \cos L \\
8 & \cos E
\end{array}
\]
poce \(\frac{1}{2} \cos \theta\) in the accumulebor
(4) The insbuections
\[
\begin{aligned}
& 11 \text { SICOL } \\
& 8 \text { SICOE }
\end{aligned}
\]
place \(\frac{1}{2} \sin O\) in the location SICOS ant \(\frac{1}{2} \cos \theta\) in the accommeter.

No stcos is dedaset crition tens subworince ben.
2.3. STORE USED

46 constantive locations
12 Literals
2.4. THE TAKGE

Maxinnm number ob obeyad insbuctiont:21 for Sine
22 for Cosime
50 for Sine \& Cosime
2.5. ACCURACY.

Maximum eroer belicued to be \(\pm 1 \times 2^{m 17}\)

\section*{3.t. Function}

A subroutine for finding the single-bingto square rove
of a single or double-lengte numbers and for
finding the hypotenuse of a right-angled triangle.
3.2. METHOD OF USE \& ENTEY INSTRUCTIONS.
(1) To find the single-lengter square-root of the
single-lengte fraction in the accumulator:\(\begin{array}{cc}11 & \text { SSSRL } \\ 8 & \text { SSSRE }\end{array}\)
On exit the result is in the accumulator. (Also on exit the operand will be in DSSRA, \& location DSSRATi will be zero).
(2) To find the single-langth squam-roct of the double-lengte fraction held in the normal formate wine \(\mathrm{m} / \mathrm{s}\) part in DSSRA \& with \(4 / S\) pat in DSSRR \(4=\) DSSRQ:\(\frac{11}{8}\) DSSRL
On exit the result is in the accumulator. (Also on exit the operand will still be in DSSRA \& DSSRA+D.
(3) To find the quantity
\[
\sqrt{\text { Accumulate }{ }^{2}+\text { PYTHB }^{2}}
\]

\section*{11 PYTHL \\ 8 PYTHE}

On exit the result is in the accumulator.
The operands may be integers, fractions, or number wite any other scaling (provided they are both the same); the result will have the same seating.
(Also on ext, Accumulator \({ }^{2}+\) PYTHB \(^{2}\) is hell as a double-lingth number in DSSRA \& DSSEAT 1. Not that the squats are added double-lengte to retain singlo-length accuracy)
(4) Not that the location DSSRA +1 is also Libelled BSSRQ; and that both of these and the label PYTHS ans deleted withiro the subroutine tape.
(5) A single-langte integer can be squat-rooted by the instructions:-
\begin{tabular}{llll}
14 & 8175 & 5 & DSSRA 1 \\
5 & DSSRA & 4 & +O \\
3 & DSSRA 1 & 5 & DSSRA \\
11 & DSSRL & 11 & DSSRL \\
8 & DSSRE & 8 & DSSRE.
\end{tabular}

The right-hand metined is faster, but is it is used, para. 3.3. (1) does not apply.
3.3. NEGATIVE NUMEERS \& OTHER ERRORS.
(1) If the operand of the routine is negative, the result to is given. An error indication is NOT given, since, even in correctly written programs the square-root subroutine may be entered with a small negative number in the accumulator due to rounding errors; in these cases to is the correct answer.
(2) It is the user's responsibility to ensure that the addiction of (Accumulator \({ }^{2}+\) PYTHiA \(^{2}\) ) does not overflow.
(3) The sign bit of DSSRA+1 will be ignored. In a correct program e it should be 0 .

\section*{34. STORC USES}

51 Consectine Lastions
3 Literals.

\section*{35 , TME TAK \(\quad\), usec.}


The number of iterations nequiret dapends on the
magniticue of the operand.
SSSR takes II iterations maximuxin;
142 obeyet instructions.
3.6. Accuancy.

Max evar \(\pm 1 \times 2^{17}\).
1. ARCTAY SUSROUTNE.
4.1. FUNCTION.

A Subwutino bo calcutate the arctangmet li.e. the principot value or "inuerse bragent") ot a quantiby,
4.2. METHOL OF USE \(\%\) ENTKY INSTOUCTIONS.

To calculate Arctan \(\left(\frac{S}{C}\right)\) place:-
\(C\) in tha locatiom ATANC
\(S\) in the Accumulator.
The instructions:-
11 ATATNL
8 ATANE
will place \(\frac{1}{\pi}\). Arctan \(\left(\frac{s}{c}\right)\) in radians, i.e. \(\frac{1}{180}\). Arctan \(\left(\frac{5}{c}\right)\) im degreas, in the accumulater.

In the indeteminate case, i.e. \(S=C=O\), a lesult of to will be given.
Note ATANC is declared articin the subroutine tope, (and that, ove exit, its original value will have been lost).
4.3. STORE USED.

46 consecutive locetions
12 eiterals.
44. TME TAREN.

36 obeyet imstructions maximum.
4.5. ACCURACY

Mars error botieved to be \(\pm 1 \times 2^{-17}\).

\section*{Chapter 1: INTRODUCTION}

\subsection*{1.1 Purpose}

To sort a number of fixed length records (data items) held in core store into ascending or descending order.

\subsection*{1.2 Summary}

A record must be a number of consecutiye words. The file to be sorted must consist of consecutive records in core store. Records are split into two parts, the data-area and the key (the part on which the sorting is to be performed). The key itself is split into parts which are to be sorted on individually. Any part of the key may occupy between 1 and 18 consecutive bits in any one word of the record. Information about the file and the way in which it is to be sorted is given in a sort-table and a sort-list. The former specifies details of the file and the latter details on how the file is to be sorted.

\subsection*{1.3 Form of Distribution}

Shellsort is distributed as a mnemonic tape for input under 900 SIR.

\subsection*{1.4 Method of Use}

Shellsort is assembled as a block of the users program and entered in the standard manner, storing the link in SHELLSORT and transferring control to SHELLSORT+1. A parameter word immediately following the entry must contain the address of the sort-table. Exit is to the location following the parameter word.

Example
11 SHELLSORT
8 SHELLSORT+1
0 SORTTABLE
1.4.1 Entry and Exit Conditions

The content of the \(A, Q\) and \(B\) registers is irrelevent on entry and undefined on exit. On exit the file will have been sorted
'in situ' by exchanging complete records.

\subsection*{1.5 Restrictions}

The following restrictions on the use of SHELLSORT should be noted:-
(i) The file must be of the specified format.
(ii) If a file is sorted ' \(n\) ' deep, then the two arrays SHIFTS and COLLS in SHELLSORT must be declared as \(>(\mathrm{n}+1)\). On the standard tape SHIFTS and COLLS are declared as \(\geqslant 19\), i.e. sorted 9 deep is permitted.
(iii) All records must have identical format.

Chapter 2: FUNCTIONS

\section*{2. I Format of File}

The records to be sorted may be of one or more 18 bit words. They must reside in a continuous area of core store and must all be of the same length. The values on which the sort is to depend are held in a key, which must be of the same format in every record.

The key may form part or all of the record, it may consist of one or many parts, (the maximum number of parts is 9 in the standard program, but see Chapter 1.5).

Each part of the key may occupy the whole or part of an 18 bit word in the record. One part of a key cannot extend over more than one 18 bit word in core store, but see Chapter 2.5.

\section*{Example: 4 word Record, 3 part key}
\begin{tabular}{|c|c|c|c|}
\hline Word 1 & \begin{tabular}{l}
Part 2 \\
bits 18 to 10
\end{tabular} & \multicolumn{2}{|l|}{Other information} \\
\hline Word 2 & \multicolumn{3}{|l|}{Part 1 of key bits 18 to 1} \\
\hline Word 3 & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Part } 3 \\
& \text { bits } 16 \text { to } 4
\end{aligned}
\]} & \\
\hline Word 4 & \multicolumn{3}{|l|}{Other Information} \\
\hline
\end{tabular}

\section*{2. 2 Sort-table}

The sort-table is of the following form:-
\begin{tabular}{lll} 
SORTTABLE & +400 & (number of records) \\
& +3 & (number of words per record)
\end{tabular}
\(\emptyset\) FILE (the address of the first location
\(\emptyset\) SORTLIST (the address of the sort-iist)
\begin{tabular}{|c|c|}
\hline \(+2\) & (the word of the record containing part 1 of the KEY (The first word of the record is word 1) \\
\hline \& \(\emptyset \emptyset \emptyset 777\) & (The collating constant for part 1 of the KEY i. e. in this case part 1 of the KEY is the 9 least significant bits of word 2) \\
\hline \[
\begin{aligned}
& +3 \\
& \& 001777)
\end{aligned}
\] & as above but for part 2 of KEY. \\
\hline etc. & \\
\hline \(+0\) & (end of sort-table). \\
\hline
\end{tabular}
2.3 Sorting on Negative parts of the Key.

Any part of the key consisting of \(n\) consecutive bits may
be regarded as
i) An unsigned \(n\) bit number in the range 0 to \(2^{(n-1)}\) i. e. always positive.

OR ii) An ( \(n\) ) bit number with bit ( n ) representing the sign bit, i. e. negative values are permitted, (stored in twos complement form, as for 18 bit machine words)

To specify the way in which any particular part of the key is to be interpreted (i.e. as above), the part numbers in the sorting priority table of the sort-list should contain \(+n\) (where ' \(n\) ' is the relevant part of the key) if this is to be interpreted as (i) and \(-n\) if it is to be interpreted as (ii). The absolute value of the number entered will be taken as the relevant part of the key.

\section*{2. 4 The sort-list}

The sort-list is of the following form:-
*This table specified the priurities in which the parts of the KEY are to be sorted.
e. g. In this case the file is sorted on part 5 of the KEY. If two entries are found equal in part 5, then these two records are sorted on part 3 etc.

The word containing each part of the KEY and its collating constant are given in the SORT-TABLE.

The sort-table and the sort-list must be supplied by the user. The address of the sort-table must be placed in the location following the entry to SHELLSORT.
N. B. The order in which the parts of a KEY are numbered is arbitary. Having numbered the parts, however, the items in SORTTABLE +4 onwards must be set-up accordingly.
e.g. A KEY of the form

must be specified as
+2
\(\& 000777\)
+1
\(\& 777700\)
+2
\(\& 777000\)
+1
\(\& 000077\)
\(+\emptyset\)
2.5 Sorting 'end-around'

It is possible that the key of a record may contain a part stored 'end-around' i. e.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|c|}{1} & \(2 a\) \\
\hline \(2 b\) & 3 \\
\hline
\end{tabular}

Parts of PART 2 of the KEY are stored in both words 1 and 2 of the record. This may be sorted on by specifying the sort on part 2 a , and, if these are found equal, then sort out part 23 . The parts must be numbered \(1,2,3,4\) for \(1,2 a, 2 b, 3\) respectively. This will achieve the same effect as sorting on part 2 stored as consecutive bits. Only positive parts of keys may be sorted on in this manner.

\section*{2. 6 Character Sorts}

Internal and/or tape code characters may be sorted using SHELLSORT by representing each character as a separate part of the key.

\section*{2. 7 Sorting Floating Point Numbers}

\subsection*{2.7.1. Packed Numbers}

Packed numbers are regarded as two word records. Sorting is on firstly, the exponent, secondly the most significant bits of the mantissa and lastly on the least significant bits of the mantissa. i. e. the sorting sequence is:-


Negative numbers must be permitted in parts 1 and 2.

\subsection*{2.7.2 Unpacked Numbers}

Specify 3 whole word keys, on the order : exponent, most significant mantissa, least significant mantissa.


\section*{2. 8 Use of Extra Modules of Core Store}

The main program, the sort-table, the sort-list and the file may be stored in different modules, providing that when the address of (a) the sort-table (b) the sort-list and (c) the file, is specified in (a) the parameter word (b) the sort-table and (c) the sort-table, the value specified is the address relative to the module containing SGELLSORT. e.g. If SHELLSORT is in module 1 and the file in module 2, then the sort-table should specify 1 FILE (i. e. 8192 + module 2 address of FILE), as the address of the file, regardless of the module containing the sort-table. Shellsort. must be in the same module as the main program. The file may extend over
more than one module of core store, without restriction, except that it may only overwrite locations 8180 to 8191 of module 0 if the initial instructions are disabled.

\subsection*{2.9 Program Levels}

Shellsort may be run at any program level.

Chapter 3: METHOD USED
The method used is a high speed sift sort technique with a varying interval of comparison and exchange. The method is described in "A HIGH SPEED SOR TING PROCEDURE" by D. L. SHELL in "Communications of the A. C. M. " Vol. 2 No. 7 of July 1959.

\section*{Chapter 4: SPEED AND STORE USED}

\subsection*{4.1 Examples of Time Taken}

On the 903, the time taken to sort 1000 seven word records, sorting 9 deep (i.e. each key consists of 9 parts) was approximately 2.5 minutes. 40 three word records, sorted 6 deep, took approximately 5 seconds.

Equivalent times on 905, with one microsecond store, are 20 seconds and 0.6 seconds respectively.

It must of course be emphasised that times depend targely on the random nature or otherwise of the records, especially the number of records that can be sorted on the first part of the key.

\section*{4. 2 Store Used}

The store used is approximately 220 locations of code, and \(17+2 n\) (where \(n\) is the sort depth) locations of data; plus, of course, the users file, sort-table, and sort-list.

Actual store used by standard tape (i.e. \(n=9\) ):-
239 consecutive locations
6 Iiterals```

